Pansharpening via Unsupervised Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Pansharpening by Convolutional Neural Networks
A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three...
متن کاملGraph Convolutional Neural Networks via Scattering
We generalize the scattering transform to graphs and consequently construct a convolutional neural network on graphs. We show that under certain conditions, any feature generated by such a network is approximately invariant to permutations and stable to graph manipulations. Numerical results demonstrate competitive performance on relevant datasets.
متن کاملCrater Detection via Convolutional Neural Networks
Joseph Paul Cohen, Henry Z. Lo, Tingting Lu, and Wei Ding at the University of Massachusetts Boston ({joecohen, henryzlo, ding}@cs.umb.edu, [email protected]) Introduction Craters are among the most studied geomorphic features in the Solar System because they yield important information about the past and present geological processes and provide information about the relative ages of obser...
متن کاملPersonalized Citation Recommendation via Convolutional Neural Networks
Automatic citation recommendation based on citation context, together with consideration of users’ preference and writing patterns is an emerging research topic. In this paper, we propose a novel personalized convolutional neural networks (p-CNN) discriminatively trained by maximizing the conditional likelihood of the cited documents given a citation context. The proposed model not only nicely ...
متن کاملShort Text Clustering via Convolutional Neural Networks
Short text clustering has become an increasing important task with the popularity of social media, and it is a challenging problem due to its sparseness of text representation. In this paper, we propose a Short Text Clustering via Convolutional neural networks (abbr. to STCC), which is more beneficial for clustering by considering one constraint on learned features through a self-taught learnin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2020
ISSN: 1939-1404,2151-1535
DOI: 10.1109/jstars.2020.3008047